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Varactor-Tunable Uniplanar Ring Resonators

Julio A. Navarro and Kai Chang, Fellow, IEEE

Abstract—In this paper, slotline and CPW ring resonators are
introduced and integrated with varactor diodes to create electron-
ically tunable uniplanar ring resonators. Varactors electronically
tune the second resonant mode of the slotline ring over a 23%
bandwidth from 3.03 to 3.83 GHz with a 4.5 & 1.5 dB variation
in insertion loss. Similarly, a CPW ring resonator was tuned over
a 22% bandwidth from 2.88 to 3.59 GHz. Both resonators offer
the ground plane and center conductor on the same side of the
substrate to allow easy series or shunt insertion of solid-state
devices. DC biasing is naturally integrated in the slotline structure
and straight forward in CPW. Monolithic implementation of
these resonators would not require via holes to ground solid-state
devices which should reduce processing complexity and increase
production yields.

I. INTRODUCTION

ESONATORS FORM the basic design elements in many

circuit components including filters, oscillators, couplers
and antennas. Planar resonators offer several advantages over
conventional rectangular/circular waveguide resonators includ-
ing size, weight and cost. Planar resonators that can be
easily integrated with solid-state devices like varactors, PINs
and FETs provide low-cost alternatives for switchable/tunable
filters, amplifiers, oscillators and active antennas. Although
most linear and ring planar resonators have been realized in
microstrip, other planar transmission lines such as coplanar
waveguide(CPW) and slotline may offer some useful advan-
tages.

The microstrip ring resonator was introduced by Troughton
[1]1in 1968. Since its introduction, the microstrip ring resonator
has been used in determining guided wavelength (Ag) [2], [3],
effective dielectric constant (e.g) [4], equivalent circuits for
discontinuities [5], and relative diclectric constant (e,) [6].
Microstrip ring resonators allow easy series insertion of solid-
state devices for tuning [7]-{9], switching [10], and RF power
generation [11]. They provide a low-loss, compact quasi-TEM
propagation mode with easy transition to coax and simple
design of test fixtures. Some drawbacks of using microstrip
include sensitivity to substrate thickness, difficulty of inserting
shunt solid-state devices, and the design of high-impedance
lines for dc biasing. Although microstrip is the most mature
and widely used planar transmission line, other forms of
transmission lines are available for flexibility in circuit design.
These uniplanar transmission lines include CPW, slotline and
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Fig. 1. Series/shunt diode insertion and biasing on several planar transmis~

sion lines.

coplanar strips (CPS). The characteristics of these transmission
lines are listed in [12, p. 299].

In recent years, coplanar waveguide has emerged as an
alternative to microstrip in microwave and millimeter-wave
hybrid (MIC) and monolithic (MMIC) integrated circuits. The
center conductor and ground planes are on the same side of
the substrate to allow easy series and shunt connections of
passive and active solid-state devices [13]. Use of CPW also
circumvents the need for via holes to connect the center con-
ductor to ground and helps to reduce processing complexity in
monolithic implementations. Fig. 1 shows possible mounting
and biasing configurations for series and shunt devices on
microstrip, slotline, CPW and CPS.

Using CPW, slotline and CPS for new uniplanar resonators
may be important for design flexibility in many filter, cou-
pler, oscillator and antenna applications. Many shapes have
been used in microstrip which include linear, disk and ring
resonators. Linear CPW resonators were used in [14], [15]
for band-pass filter applications. Slotline sections have been
used for filters [15], couplers [16] and antennas [17], [18].
Slotline rings have been implemented in a frequency selective
surface [19]. In this paper, we introduce slotline and CPW ring
resonators for tunable filter applications. These configurations
allow easy device insertion and dc biasing,.

Two uniplanar ring resonators were developed with over
20% varactor tuning range and moderate insertion loss. The
uniplanar rings use slotline and CPW transmission lines. Their
tuning ranges are wider and the configurations offer greater
flexibility over the microstrip rings in [7]-[10]. Microstrip, for
instance, requires high impedance lines at specific locations to
apply dc biasing and a series gap fixes the position of the
varactor along the ring. Furthermore, shunt varactor insertion
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requires drilling through the substrate in hybrid MICs or via
hole processing in MMICs.

The slotline ring circuit configuration, on the other hand,
offers inherent dc biasing pads without the need for filtering
capacitors. Shunt diodes can be optimized along the ring
circumference. Although the CPW ring requires bias lines
similar to microstrip and a cover to remove even modes,
it is not sensitive to substrate thickness and two solid-state
devices can be placed at the same node point along the ring.
The CPW ring can have greater capacitance range and lower
diode resistance loss by using two varactors at the same tuning
node. Both uniplanar configurations are amenable to other
device integration for switching, tuning, mixing and RF power
generation.

II. RING CIrRCUIT DESIGN AND MODEL

Ring resonator design requires the determination of the
guided wavelength ( Ay) of the transmission line used. The
ring will resonate when its mean circumference is a multiple
of the guided wavelength

2rR=n)\, n=1,23, (1)

where R is the mean ring radius and n is the mode number.

The microstrip ring has been analyzed with many different
methods: “

1) T and m-equivalent circuits [9, 10].

2) Magnetic wall model [20].

3) Field solutions [21]

4) Numerical solutions [22]

5) Distributed transmission line [23].

Each method of analysis determines the resonant frequen-
cies of the modes of the resonator. The methods vary in ac-
curacy and computing time requirements. The field, numerical
and magnetic-wall methods often require large storage space
and computing speed but provide little flexibility in incorporat-
ing solid-state devices. The equivalent circuit method provides
a simple and quick analysis and facilitates the introduction of
solid-state devices placed arbitrarily along the ring.

The distributed transmission line method provides a sim-
ple and straight forward solution with little computer time
requirements. Solid-state devices can be inserted easily along
the circumference of the ring. Closed form solutions or curve-
fitted expressions for the parameters of the transmission line
ring are used. These parameters are used in a circuit simulation
program such as Touchstone or Microwave Spice. The §-
parameter or input impedance results are found easily and
quickly with minimal storage requirements. Overall accuracy
of the resonant frequencies depends on the transmission line
parameters used.

The ring equivalent circuit for a varactor tunable ring is
shown in Fig. 2. The ring is divided into many sections of
transmission lines for the analysis [23]. The field distribution at
the resonant frequencies along the ring depends on the feeding
method used. Several feeding [24] configurations are shown
in Fig. 3. For symmetrical feeds without any asymmetrical
perturbations along the ring, single mode operation at each
resonant frequency is assured. The electric field distribution

Transmission/ ;Zii;

Line Sections
c(v)

Fig. 2. Ring resonator distributed transmission line equivalent circuit.
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Fig. 3. Several possible feed configurations for slotline ring resonators.

for the capacitive feeds vary according to:
|E| = cos(ny) n=1,2,3--- )

Fig. 4 shows the field distribution for the first four resonant
modes of the ring resonator. Even or odd multiple-wavelength
standing waves are set up along the resonator. By proper
placement of devices, one can selectively choose to match,
tune, or switch-off even/odd resonant modes. Fig. 4 shows that
diodes at 90 and 270 degrees will greatly affect even resonant
modes but have little effect on odd resonant modes. For our
design, varactors at these positions serve to tune the second
resonant mode. The first and third modes are unaffected.
Furthermore, the varactors must be placed symmetrically for
single mode operation and avoid split mode effects [25].

The equivalent circuit of a varactor diode and the reactance
curves at 0 and 30 volts are shown in Fig. 5. The parasitic
effects are also shown. The junction capacitance (C;{(V))
behaves as

Cho

““——"—/'—7
(1+V_bz)

where C9 = 1.6 pF, V}; is the built-in potential of 1.3 volts

for GaAs [26], ~ is the capacitance-voltage slope exponent
of 0.5 for abrupt-junctions and V' is the applied reverse-bias
varactor voltage.

G, (V)= €
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¢ Indicates Input/Output Coupling
X Indicates Diode Position

Fig. 4. Electric field distribution for different modes along a ring resonator.
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Fig. 5. Varactor equivalent circuit and impedance with and without para-
sitics.

III. THE CPW-FED SLOTLINE RING RESONATOR

Fig. 6 shows the CPW-fed slotline ring configuration. A
distributed transmission line model shown in Fig. 2 was used
to analyze the slotline ring. A 50 {2 CPW line feeds an 85 Q2
slotline ring through a series gap. The gap can be represented
by a capacitor which controls the coupling efficiency into the
slotline ring and is inversely proportional to the gap spacing.
The effect of the size of the coupling gap is shown in Fig. 7 for
two gap sizes of approximately 0.50 and 0.05 mm. The 0.05
mm gap reduces the insertion loss by increasing the coupling
into and out of the resonator. The ring has a mean radius of
11.26 mm and uses a 0.50 mm slotline on a 0.63 mm thick
RT-Duroid 6010 substrate. The relative dielectric constant is
10.5.

Fig. 8(a) shows the theoretical and experimental insertion
loss for a 0.05 mm gap. The theoretical results were obtained
based on the equivalent circuit shown in Fig. 2. The slotline
ring is formed by cascading many small sections of slotlines

Mode:

Insertion Loss (dB)

.50 — —— : —
1 2 3 4 5 6 7 8 9
Frequency (GH2)

10 11 12

Fig. 7. Effect of gap spacing on input/output coupling to slotline ring. Gap
115 0.05 mm and Gap 2 is 0.50 mm.

together. The input coupling gap is approximated using a
small series capacitor. The transmission line parameters were
determined based on formulas in [12, p. 215]. The gap
capacitances were determined empirically from measurements.
The theoretical results agree fairly well with measurement over
a wide bandwidth. The errors for resonant frequencies are
within 1.2%. Fig. 8(b) shows the return loss which indicates
the typical input matching condition.

IV. VARACTOR TUNING RESULTS FOR SLOTLINE RING

The varactors located at 90 and 270 degrees along the ring
tune the even modes of the resonator and allow a second mode
electronic tuning bandwidth of 940 MHz from 3.13 to 4.07
GHz for varactor voltages of 1.35 to 30 volts. Fig. 9(a) shows
the experimental results. The first peak is for the first mode
which is stationary during the electronic tuning. A return loss
of 6.4, 7.7 and 8.5 dB was achieved for varactor voltages of
5, 10 and 30 V, respectively. Improved return loss could be
achieved using matching elements at the coupling points. Fig.
9(b) shows a comparison between the theoretical and the actual
tuning range with reasonable agreement. The increase in loss
as the frequency is lowered is due, in part, to a reduction in
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Fig. 8. Theoretical versus measured insertion loss and resonant frequencies

of a slotline ring resonator.(a) Insertion loss. (b) Return loss.

input/output coupling. The loss increases linearly from 6 dB
at 4.07 GHz to 11 dB at 3.13 GHz.

In order to reduce the insertion loss, a 3 X 3 X 0.3 mm
capacitive overlay [14] placed over the input and output of
the slotline ring was used to increase the coupling and reduce
the discontinuity radiation. This overlay reduced the loss and
slightly lowered the frequencies of operation due to greater
capacitive loading. The tuning bandwidth becomes 3.03 to
3.83 GHz. The 800 MHz tuning range centered at 3.4 GHz
is shown in Fig. 10. As shown, the overlay helps to improve
the insertion loss of the tunable resonator. The 23% tuning
range from 3.03 to 3.83 GHz has an insertion loss of 4.5
dB + 1.5 dB for varactor voltages of 1.35 to 30 volts. As
shown in Fig. 10, the varactors have little effect on the first
mode of the slotline ring resonator while capacitively tuning
the second mode. The 3 dB points on the pass band vary from
4,85% at 3,03 GHz to 5.17% at 3.83 GHz. The insertion loss
at £10% away from the second mode resonant frequency is
about >15 dB. The increase in insertion roll-off for the lower
frequency end of the tuning range is due to the stationary
third mode. As the varactor bias level is lowered further,
the second mode continues to approach the stationary first
mode.
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Fig. 9. Varactor tuning the of second resonant mode of a slotline ring
resonator. (a) Measured insertion loss for different varactor voltages. (b)
Theoretical versus measured second resonant mode frequency as a function
of varactor voltage.
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Fig. 11. The varactor tunable CPW ring configuration.
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Fig. 12. Insertion loss of a CPW Ring with even and odd modes propagating.

V. THE CPW RING RESONATOR

The CPW-fed CPW ring configuration is shown in Fig. 11.
The CPW ring is divided into many sections and the equivalent
circuit shown in Fig. 2 is used for analysis. Two 50 Ohm
CPW lines feed the CPW ring via a series gap. The ring has
a mean diameter of 21 mm and uses 0.5 mm slotlines spaced
1.035 mm apart on 0.635 mm RT-Duroid 6010 substrate with
a relative dielectric constant of 10.5. The resonant frequencies
are found using equation (1).

Fig. 12 shows that the performance of the CPW ring is
corrupted by the propagation of even coupled slotline modes
along the ring. To suppress these unwanted modes, the center

. disk of the ring must be maintained at ground potential. Wire
bonding can be used at the input and output of the ring
and along the ring itself to maintain the center disk ground
potential but may prove to be labor intensive. A cover serves
to maintain the center disk at ground potential all along the
circumference of the ring as well as seal and protect the
circuit. The enclosure suppresses all even mode propagation
and reduces its inductive effect on the CPW odd mode. The
enclosure and assembly shown in Fig. 13 avoids wire bonding
and soldering but requires alignment and good pressure contact
with the ring. The height and width of the enclosure do not
require high-tolerance machining.

Fig. 13. The enclosure for the CPW ring assembly.

Insertion Loss (dB)

Frequency (GHz2)

Fig. 14. Theoretical vs measured insertion loss and resonant frequencies of
a CPW ring resonator.

Fig. 14 shows the theoretical and measured results for the
enclosed CPW ring. The theoretical results were obtained
based on the equivalent circuit shown in Fig. 2. The transmis-
sion line parameters were determined based on formulas in [12,
p- 275]. The gap capacitances were determined empirically.
The agreement is within 2.91%.

VI. CPW RING VARACTOR TUNING RESULTS

Advantages of the CPW ring over the slotline ring are that
both series and shunt devices can be mounted easily along
the ring and two shunt varactors can be placed at each circuit
point to increase the tuning range and reduce the diode real
resistance. A varactor and PIN diode can be placed at a
single node to obtain switching and tuning with the same ring
resonator.

The varactors located at 90 and 270 degrees along the ring
tune the even modes of the resonator and allow a second
resonant mode electronic tuning bandwidth of 710 MHz from
2.88 to 3.59 GHz for varactor voltages of 0 to 30 volts.
Fig. 15(a) shows the experimental results and Fig. 15(b)
shows a comparison of theoretical and measured resonant
frequency at different varactor bias levels. The increase in loss
as the frequency is lowered is due, in part, to a reduction in
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Fig. 15. Varactor tuning of the second resonant mode of a CPW ring
resonator (a) Measured insertion loss for different varactor voltages. (b)
Theoretical versus measured second resonant mode frequency as a function
of varactor voltage.

input/output coupling. The loss increases linearly from 4 dB
at 3.59 GHz to 10.5 dB at 2.88 GHz. Although two varactors
can be used at either point on the ring, only one was used for
this investigation. The insertion loss of the CPW ring could
be reduced by using the similar dielectric overlay at the input
and output as was used in the slotline ring.

VII. CONCLUSIONS

Uniplanar slotline and CPW ring resonators have been
developed to provide a useful electronic tuning range. The
configurations can be easily designed to match, switch, or tune
modes electronically. The circuit is uniplanar and allows series
and shunt connections of solid-state devices. The designs can
be fabricated using monolithic techniques without the need
for via holes which should reduce processing complexity and
improve yields. The circuits should have many applications in
filtering, switching, stabilizing and signal processing.
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